
An agricultural Cyber-Foraging

system for resource-challenged

environments

Reuel Brion

Faculty of Exact Sciences

VU University Amsterdam

A thesis submitted for the degree of

Computer Science, Track Software Engineering and Green IT

2015

mailto:reuelbrion@gmail.com
http://www.few.vu.nl
http://www.vu.nl

ii

1. First Reader: Patricia Lago

2. Daily Supervisor: Grace Lewis

3. Second Reader: Christophe Guéret

iii

Abstract

Cyber-foraging is a technique that extends the capabilities of mobile devices

by using external resources, often in the form of surrogate computers. The

proliferation of mobile devices with increased capabilities in developing re-

gions o�ers possibilities of using cyber-foraging tactics to create meaningful

services for people living and working in these regions.

In this paper, a set of usage scenarios for an agricultural knowledge exchange

system to be used in resource-challenged regions is proposed, from which a

set of requirements is created. Based on those, a set of cyber-foraging tactics

was selected and used to create an architecture for the system.

A functioning demo implementation was created using this architecture,

indicating that the selected tactics can be used to successfully realize the

functional as well as non-functional requirements of this kind of system.

Contents

List of Figures iii

List of Tables v

1 Introduction 1

1.1 Context . 1

1.2 Objective . 1

1.3 Research Question . 2

1.3.1 Main Research Question . 2

1.3.2 Subquestions . 2

1.4 Research Method . 2

2 System description 3

2.1 Outline . 3

2.2 Usage scenarios . 4

2.3 Requirements . 12

2.3.1 Functional requirements . 13

2.3.2 Non-functional requirements . 14

2.3.3 Constraints and assumptions . 21

2.3.4 Mapping requirements to tactics 22

3 Architecture and design 27

3.1 System components . 27

3.2 Mobile app components . 29

3.2.1 Surrogate components . 29

3.2.2 Mobile hub components . 30

3.2.3 Components implemented on third party systems 31

3.3 Mapping tactics to components . 33

i

CONTENTS

3.4 Component interaction . 38

4 Implementation 49

4.1 Demo implementation details . 49

4.1.1 Introduction . 49

4.1.2 Changes and notes . 51

4.1.3 Technologies used . 51

4.1.4 Software project structure . 52

4.2 Requirements and tactic implementation 53

4.2.1 General comments . 53

4.2.2 Functional requirements . 53

4.2.3 Non-functional requirements . 53

5 Conclusion and Discussion 57

5.1 Conclusion . 57

5.1.1 Research results . 57

5.2 Discussion . 59

6 Appendices 61

6.1 Appendix A: Running the application 61

6.1.1 Installation . 61

6.1.2 Setup . 62

6.2 Appendix B: Usage guide . 62

References 65

ii

List of Figures

2.1 Basic Setup . 4

2.2 Activity Diagram Legend . 5

2.3 Scenario 1 Activity Diagram . 5

2.4 Scenario 2.1 Activity Diagram . 6

2.5 Scenario 2.2 Activity Diagram . 7

2.6 Scenario 2.3 Activity Diagram . 8

2.7 Scenario 3.1 Activity Diagram . 8

2.8 Scenario 3.2 Activity Diagram . 9

2.9 Scenario 4 Activity Diagram . 10

2.10 Scenario 7 Activity Diagram . 11

2.11 System Context Diagram . 12

2.12 Data Flows Between System Nodes . 20

3.1 System Component Diagram

Note: to avoid clutter, high level components have been visualized as

dashed line boxes . 28

3.2 Components Realizing Tactic 6.1 . 34

3.3 Components Realizing Tactics 6.2 and 6.2.1 35

3.4 Components Realizing Tactics 6.3 and 6.3.1 36

3.5 Components Realizing Tactics 6.4 and 6.4.3 37

3.6 Components Realizing Tactic 7.2, 7.2.3, 7.3 and 7.3.1 38

3.7 Sequence Diagram Legend . 39

3.8 Scenario S1 (Collect temperature data, surrogate connection available),

Sequence Diagram . 40

iii

LIST OF FIGURES

3.9 Scenario S2.1 (Perform regression on rainfall data, expensive computa-

tion, surrogate connection available), S2.2 (Perform regression on rainfall

data, expensive computation, no surrogate connection) and S2.3 (Perform

regression on rainfall data, expensive computation, connection breaks

during o�oaded computation), Sequence Diagram 42

3.10 Scenario S2.2 (Perform regression on rainfall data, expensive computa-

tion, no surrogate connection), Additional Sequence Diagram 42

3.11 Scenario S2.3 (Perform regression on rainfall data, expensive compu-

tation, connection breaks during o�oaded computation) sequence dia-

gram), Additional Sequence Diagram . 43

3.12 Scenario S3.1 (Receive new weather forecasts) and S3.2 (Receive new

weather forecasts, surrogate crashes during transfer), Sequence Diagram 44

3.13 Scenario S4 (Setting up a surrogate), Sequence Diagram 45

3.14 Scenario S5 (Mobile hub synchronizes with surrogate), Sequence Diagram 46

3.15 Scenario S6 (Mobile hub connects to the Internet), Sequence Diagram . 47

3.16 Scenario S7 (Retrieve stored weather data), Sequence Diagram 48

3.17 Scenario S8 (Retrieve stored weather data), Sequence Diagram 48

4.1 System Component Diagram - Implementation overview

Note: to avoid clutter, high level components have been visualized as

dashed line boxes . 50

6.1 App screenshot . 64

iv

List of Tables

2.1 mapping data �ows to scenarios . 12

2.2 Functional requirements . 14

2.3 Non-functional requirements . 19

2.4 Connection loss . 20

2.5 Constraints and assumptions . 21

2.6 Tactic mappings . 22

3.1 mapping components to requirements . 32

v

LIST OF TABLES

vi

1

Introduction

1.1 Context

Along with the proliferation of mobile devices around the world comes a large potential

to deliver many valuable services to developing areas. Initiatives such as the VOICES

project (1) have been developing these kinds of services, particularly for feature phones.

Now that there are more and more smartphones being released that target developing

markets, and with prices approaching those of feature phones (2), there is merit in

making use of the increased capabilities and improved usability that smartphones can

o�er.

Cyber-Foraging is a technique that focuses on extending the capabilities of mobile

devices with the computational capabilities and storage of external resources, often in

the form of local servers called surrogates. As many developing areas have to deal with a

lack of proper access to resources such as Internet and electricity, Cyber-Foraging o�ers

potential solutions to these resource challenges by leveraging proximate surrogates that

can provide services that involve heavy computation such as image processing, store

large sets of data collected in the �eld, or store information retrieved from data centers

during scarce moments of Internet connectivity.

1.2 Objective

The objective of this project is to demonstrate the value of using Cyber-Foraging ar-

chitectural tactics (3) for the design and development of an agricultural knowledge

exchange system to be used in a resource-challenged region.

1

1. INTRODUCTION

1.3 Research Question

1.3.1 Main Research Question

What cyber-foraging architectural tactics can be used to develop an agricultural knowl-

edge exchange system to be used in a resource-challenged region?

1.3.2 Subquestions

RQ1 What are the usage scenarios for an agricultural knowledge exchange system to

be used in a resource-challenged region?

RQ2 Which of the proposed cyber-foraging architectural tactics can be used in the

development of the system and how do they map to the system requirements?

RQ3 What system architecture and design follows from using the selected tactics?

RQ4 Does the developed system based on these tactics meet all its functional and

non-functional requirements?

1.4 Research Method

The project will be divided into two main parts.

Subquestions RQ1, RQ2 and RQ3 will be answered by the creation of a requirements

and design document for a Weather Information system aimed at users in developing

regions that makes use of architectural tactics for cyber-foraging . This system takes

the VOICES (1) projects as inspiration and aims to expand on them, moving the focus

from feature phones to smartphones.

Subquestion RQ4 will be answered by implementing a demonstrator of the system

that showcases the tactics working in practice.

2

2

System description

2.1 Outline

The aim of this project is to create a design document as well as a (demo) implementa-

tion for a system which makes it possible for people involved in agriculture (for example

farmers and NGO employees) who work in environments with little to no access to the

internet and electricity, to collect and retrieve data about the weather. The system

should be able to perform computations on the collected data as examples of valuable

services for the aforementioned stakeholders. An important aspect of the project will be

to demonstrate the value of applying cyber-foraging tactics to this kind of system. End

users of the system interact with smartphones, the proliferation of which in developing

regions is predicted to rise signi�cantly in the coming years (4)(5). The capabilities of

the mobile application are extended by surrogates in the form of single board computers

running on solar power. To be able to eventually store all collected data in a cloud based

back-end, a mobile hub carrying a computer system with increased storage capabilities

will connect to each surrogate periodically, and eventually connect to the internet. This

also makes it possible to propagate data from the internet to the surrogates and mobile

devices. This setup was inspired by the DakNet project in India (6).

Illustration 2.1 shows an overview of the system. The mobile hub (3) is a computer

system with networking and storage capabilities (such as a laptop), carried by for ex-

ample an automobile. It can move from villages that lack access to the internet to a

larger city that does have access (1), such that it can store as well as fetch data that can

be used for services in the villages. Surrogates (4) are single board computers (like for

example Raspberry Pi (7)), extended with network adapters and solar batteries. Mobile

devices (2) are smartphones, most of which will be in the low-end range, generally with

3

2. SYSTEM DESCRIPTION

computational ability and storage capacity lower than the surrogates. Throughout this

document, the surrogate, mobile device and mobile hub components will occasionally

be addressed as "system nodes".

Figure 2.1: Basic Setup

2.2 Usage scenarios

This section contains the descriptions of the usage scenarios for the system. The sce-

narios are accompanied by activity diagrams depicting the �ow of actions performed by

the users of the system. Figure 2.2 shows the legend for the activity diagrams used.

4

2.2 Usage scenarios

Figure 2.2: Activity Diagram Legend

Scenario S1 - Collect temperature data, surrogate connection available

A farmer wants to save the temperature he just measured in a certain region. He opens

the mobile app. Because he has voice support enabled, the icons he can select are

described by a pre-recorded voice. He selects the "Enter Data" icon and then selects

the "Temperature" �eld. He enters his measurement and selects the "Submit" button.

Figure 2.3 shows an activity diagram for this scenario.

Figure 2.3: Scenario 1 Activity Diagram

Scenario S2.1 - Perform regression on rainfall data (or request prediction),

expensive computation, surrogate connection available

An NGO employee wants to perform a regression on all data collected in the last year

5

2. SYSTEM DESCRIPTION

(or request a prediction). He selects the "Statistics" icon in the app main menu. In the

statistics menu, he selects the "Linear Regression" button (or "Prediction" in the case

of a prediction request), enters the variables for his query, and submits it. A message

states that this computation may take some time, so he minimizes the app. After a

while, a noti�cation becomes visible on his phone, stating that his computation is ready.

Upon opening the app, he is able to view a visualization of the regression function and

the data points by tapping the noti�cation. Figure 2.4 shows an activity diagram for

this scenario.

Figure 2.4: Scenario 2.1 Activity Diagram

Scenario S2.2 - Perform regression on rainfall data (or request prediction),

expensive computation, no surrogate connection

An NGO employee wants to perform a regression on all data collected in the last year

(or request a prediction). He selects the "Statistics" icon in the app main menu. In the

statistics menu, he selects the "Linear Regression" button (or "Prediction" in the case

of a prediction request), enters the variables for his query, and submits it. A dialog is

presented, stating that this computation can only be performed when a connection to a

surrogate is available. His inputs are retained on the query input screen. After a while,

when he gets closer to a surrogate, an icon indicates that there is a connection to the

surrogate. He tries again, and this time the computation is performed and the results

are sent to his mobile device. Figure 2.5 shows an activity diagram for this scenario.

6

2.2 Usage scenarios

Figure 2.5: Scenario 2.2 Activity Diagram

Scenario S2.3 - Perform regression or prediction on rainfall data (or request

prediction), expensive computation, connection breaks during o�oaded com-

putation

An NGO employee wants to perform a regression on all data collected in the last year.

He selects the "Statistics" icon in the app main menu. In the statistics menu, he selects

the "Linear Regression" button (or "Prediction" in the case of a prediction request),

enters the variables for his query, and submits it. A message states that this compu-

tation may take some time, so he minimizes the app. He then moves out of range of

the surrogate signal. A few minutes later, he opens the app again, and is informed that

he has gone out of range of the surrogate, and can only receive the results when he

connects to the surrogate. He minimizes the app and continues his work. Later that

day, he gets closer to the surrogate, and a noti�cation is sent to his phone, stating that

his computation is ready. Upon opening the app, he can view a visualization of the

regression function and the data points. Figure 2.6 shows an activity diagram for this

scenario.

7

2. SYSTEM DESCRIPTION

Figure 2.6: Scenario 2.3 Activity Diagram

Scenario S3.1 - Receive new weather forecasts

A farmer receives a noti�cation on his mobile, informing him that new forecasts are

available. He opens the app and selects the "Forecasts" icon. A list of dates combined

with weather forecast data is shown and can be navigated. He selects tomorrow's date,

after which a screen opens with a more detailed description of the forecast. Figure 2.7

shows an activity diagram for this scenario.

Figure 2.7: Scenario 3.1 Activity Diagram

Scenario S3.2 - Receive new weather forecasts, surrogate crashes during

transfer

A farmer receives a noti�cation on his mobile, informing him that new forecasts are

available. He opens the app and selects the "Forecasts" icon. The app indicates it is

trying to retrieve new forecast data. Eventually, an error message appears on screen,

stating that the transfer failed because the surrogate cannot be reached. An icon is

shown, to indicate that there is no connection to a surrogate. He presses the "Retry"

icon. Because he has received instructions on the usage of the surrogate, after a few

more tries he chooses to power the surrogate o� and on again. A few minutes later, he

8

2.2 Usage scenarios

tries to retrieve the forecasts again. A list of dates combined with weather forecast data

is shown and can be navigated. Figure 2.8 shows an activity diagram for this scenario.

Figure 2.8: Scenario 3.2 Activity Diagram

Scenario S4 - Setting up a surrogate

An NGO employee is going to install a new surrogate in a village. At the NGO o�ce,

he powers it on after connecting a keyboard, mouse, and video screen to it. After

the surrogate has booted up, a window containing a form opens. In this form, basic

information about the village such as name and location can be entered. He enters all

required data, after which he clicks the "Save" button. The surrogate now shows a

con�rmation of the data he entered, and the fact that the surrogate is ready for use.

He powers o� the surrogate and disconnects all peripherals.

2.9 shows an activity diagram for this scenario.

9

2. SYSTEM DESCRIPTION

Figure 2.9: Scenario 4 Activity Diagram

Scenario S5 - Mobile hub synchronizes with surrogate

An NGO employee drives into the village with a vehicle that carries the mobile hub.

The hub detects the surrogate's broadcast, and sends a request for storage of new data.

The surrogate accepts the request and the latest forecasts and data for this region are

transferred to it. When this transfer is done, the hub sends a request to receive new

data. The surrogate accepts, and transfers newly saved weather data to the mobile hub.

Because the mobile hub visits the village only about once a week, this procedure has

high priority.

Scenario S6 - Mobile hub connects to the internet

An NGO employee returns the mobile hub to the o�ce, where a wireless internet con-

nection is available. The mobile hub connects to the internet, where it stores the data

it has collected on its last roundtrip. Subsequently it pulls data from a weather API,

based on the locations of the surrogates that are registered with it.

Scenario S7 - Retrieve stored weather data

A farmer wants to retrieve all weather data saved on the village surrogate last week. He

selects the "Get Weather Data" button. He then inputs the start and end dates for his

request, after which he selects the "Submit" button. After a few seconds, the requested

weather data is shown on screen.

Figure 2.10 shows an activity diagram for this scenario.

10

2.2 Usage scenarios

Figure 2.10: Scenario 7 Activity Diagram

Scenario S8 - Surrogate registration at the mobile hub

An NGO employee drives into the village with a vehicle that carries the mobile hub.

The hub detects the surrogate's broadcast, and since it is the �rst time the hub has

made contact with the surrogate, it sends a request for information. The surrogate

replies with a message containing its unique identi�er and location. The mobile hub

now registers the surrogate data, adding the surrogate to the system.

11

2. SYSTEM DESCRIPTION

Figure 2.11: System Context Diagram

In the system context diagram (illustration 2.11), a high level overview of the data

�ows going into and out of the system are shown. Table 2.1 connects the scenarios to

these data �ows.

S1 S2.1 S2.2 S2.3 S3.1 S3.2 S4 S5 S6 S7 S8

DF1 X X X

DF2 X

DF3 X

DF4 X X X X X X

DF5 X X

DF6 X

Table 2.1: mapping data �ows to scenarios

2.3 Requirements

In this section, the requirements of the system will be listed. The functional require-

ments will be listed in table 2.2, non-functional requirements in table 2.3, and con-

straints, as well as assumptions for the system are shown in table 2.5.

12

2.3 Requirements

2.3.1 Functional requirements

ID Name Description Related

scenarios

Priority

FR1 Store weather

data

NGO employees and farmers shall be able

to store weather data related to a certain

area in the system through a mobile app.

S1 Must

have

FR2 Retrieve

weather data

NGO employees and farmers shall be able

to retrieve weather data related to a cer-

tain area on a mobile app. This data is

derived from earlier reports (FR1), as well

as from a third party weather API acces-

sible through the Internet.

S7 Must

have

FR3 Perform re-

gression on

weather data

NGO employees shall be able to select a

weather information dataset and perform

regression on it through the mobile app. A

visualization of the results will be available

to the user afterwards.

S2.1, S2.2,

S2.3

Must

have

FR4 Predict future

weather data

values

NGO employees and farmers shall be able

to receive predictions of future values of

variables related to the weather. The pre-

dictions will run up to a week in the future.

S2.1, S2.2,

S2.3

Must

have

FR5 Surrogate

setup

Surrogates will support the mobile devices

used in the system. These surrogates are

tied to a certain region and as such need

a setup procedure that enables NGO em-

ployees to enter the correct settings before

using it.

S4 Must

have

FR6 Forecast deliv-

ery

Weather forecasts related to the region the

user is in will be made available to retrieve

at the mobile app.

S3.1, S3.2 Must

have

FR7 Integration

with cloud

based storage

systems

The system shall store all collected data in

a cloud based system such as ERS (8).

S6 Should

have

Continued on next page

13

2. SYSTEM DESCRIPTION

Continued from previous page

ID Name Description Related

scenarios

Priority

FR8 Voice interface The user interface thst farmers will inter-

act with shall be supported by voice in-

structions to help users navigate through

the app.

S1 Should

have

FR9 Synchronize

weather data

Periodically, the latest weather forecasts

and data for relevant regions are retrieved

from a third party weather API on the In-

ternet. These will be stored at the surro-

gates eventually.

S5, S6 Must

have

FR10 Surrogate

registration at

mobile hub

Whenever new surrogates are added to the

system and are operational, their identi�-

cation and location information (as pro-

vided in FR5), should be stored on the

mobile hub. This way, the mobile hub can

start collecting relevant data for this sur-

rogate (FR9).

S8 Must

have

Table 2.2: Functional requirements

2.3.2 Non-functional requirements

14

2.3 Requirements

ID Name Description Related

scenarios

Priority

NFR1 Fault tolerance

and reliability

The system should be able to recover from

failures such as crashes and loss of con-

nection between mobile devices and surro-

gates. In the regions where the system will

be used, there is expected to be a low num-

ber of persons who are pro�cient in IT.

-Surrogates should be able to detect fail-

ures in the services they o�er and restart

them accordingly.

-Losing connection during interaction be-

tween surrogates and mobile hubs as well

as surrogates and mobile devices must not

cause the services running on the surro-

gates to stop functioning.

-It is expected that mobile app users will

regularly be moving in and out of range of

surrogates during use of the system. This

should not cause users to lose results of

completed computations, or lose data they

have stored on the mobile app.

- Illustration 2.12 shows a basic overview

of the data �ows between the three main

hardware elements of the system. Each

of these interactions is initiated by a re-

quest (which is not modeled). Table 2.4

shows when data should be cached, and

what should happen in other cases.

S2.2, S2.3,

S3.2, S7

Must

have

Continued on next page

15

2. SYSTEM DESCRIPTION

Continued from previous page

ID Name Description Related

scenarios

Priority

NFR2 Easy deploy-

ment

The system should be easy to deploy,

meaning that:

-The mobile app can be installed through

an app store and does not have to be con-

�gured. It should detect and connect to

surrogates automatically.

-Surrogates have to be con�gured locally

(FR5), and this process should be able

to be performed by NGO personnel with

only basic knowledge of information tech-

nology. It should be a simple process, com-

parable to entering data in a form and con-

�rming.

-Active surrogates should register to the

mobile hub automatically on �rst connec-

tion.

S4, S8 Must

have

NFR3 Usability Literacy among users of mobile devices

will vary. Most end users will have low

technical knowledge as well. The inter-

faces to the functionality they will use

should be understandable to them.

-Text in English, including voice explana-

tions.

-Text in French, including voice explana-

tions (one of the target languages, but will

not be implemented in the demonstrator).

S1, S2.1,

S2.2, S2.3,

S3.1, S3.2,

S7

Should

have

Continued on next page

16

2.3 Requirements

Continued from previous page

ID Name Description Related

scenarios

Priority

NFR4 Extensibility Developing new functionality and adding

it to the system should be supported and

made easy.

-A standard format for services that per-

form either computation o�oad or data

staging should be available to future de-

velopers, including documentation and an

example.

Should

have

NFR5 Energy e�-

ciency

The mobile device and surrogate systems

will run in an energy challenged environ-

ment. Access to energy is limited and not

always available.

-Energy use on mobile devices should be

minimized.

-Energy use on surrogates should be mini-

mized, energy e�ciency for mobile devices

should have priority however.

S2.1, S2.2,

S2.3

Must

have

NFR6 Capacity Mobile phones have low storage capacity,

so storage should for the most part be the

responsibility of the surrogates and mobile

hubs. The surrogate should be able to pro-

vide o�oading and data staging capabili-

ties to multiple users at the same time.

-Storage used on phones should be kept

under 100 MB, not counting results for cal-

culations that the user has saved.

-Surrogates should be able to run 10 in-

stances of services at the same time.

S1, S3.1,

S3.2

Could

have

Continued on next page

17

2. SYSTEM DESCRIPTION

Continued from previous page

ID Name Description Related

scenarios

Priority

NFR7 Availability Capabilities provided by surrogates should

in principle be available 24 hours a day.

However, because surrogates will run on

solar energy, it is expected that they can

run out of energy during heavy use, espe-

cially during periods with no or little sun-

shine.

-Every 24 hour period, the surrogate

should be able to deliver services amount-

ing to 4 hours of surrogate activity. This

does not give guarantees about availability

loss due to crashes (which are discussed in

NFR1 and NFR9).

-When energy availability drops below

10% of the battery's capacity, computa-

tions that will take longer than 5 min-

utes should be queued until the battery

is charged up to above 15% again.

S1, S2.1,

S2.2, S2.3,

S3.1, S3.2,

S7

Should

have

Continued on next page

18

2.3 Requirements

Continued from previous page

ID Name Description Related

scenarios

Priority

NFR8 Performance There are no strong performance require-

ments, except for the transfer of data be-

tween mobile hub and surrogate. This is

because the window during which there is

opportunity to interchange data is short

and infrequent.

-The transfer of data between mobile hub

and surrogate should be prioritized over

other o�oaded computations or data stag-

ing operations the surrogate is performing.

The only operation with higher priority is

the registration of a new surrogate.

-The mobile hub should check for a surro-

gate broadcast signal at least 10 times per

second, as long as it is not interacting with

one already.

-The surrogate should broadcast it's pres-

ence at least once per minute.

S5 Should

have

NFR9 Recovery -When a surrogate has crashed, resetting

the hardware should get it operational

again within 10 minutes.

-When a mobile hub has crashed, reset-

ting the hardware should get it operational

again within 10 minutes.

S3.2 Must

have

NFR10 Data integrity -When weather data is entered on the mo-

bile app, it should be checked for valid

values. Example: temperature values be-

tween certain limits.

-The same applies to setup data during the

setup process.

S1 Could

have

Table 2.3: Non-functional requirements

19

2. SYSTEM DESCRIPTION

Figure 2.12: Data Flows Between System Nodes

Data

�ow

Initiator Connection loss during re-

quest, or no connection

available

Connection loss during

operation

1 Mobile

device

Retrieving results for compu-

tations happens periodically

and is invisible to the user.

If retrieval fails, the app will

simply retry at a later time.

Request is cached at surro-

gate. Retry on reconnection.

2 Mobile

device

Data is cached at mobile.

Retry on reconnection.

Data is cached at mobile.

Retry on reconnection.

3 Mobile

device

Inform user of failure/lack of

connection, user can retry. In-

puts are retained for reuse.

Inform user of failure, user can

retry. Inputs are retained for

reuse.

4 Mobile

device

Inform user of failure/lack of

connection, user can retry. In-

puts are retained for reuse.

Inform user of failure, user can

retry. Inputs are retained for

reuse.

5 Mobile

hub

Data is permanently stored at

surrogate. Retry on reconnec-

tion.

Data is permanently stored at

surrogate. Retry on reconnec-

tion.

6 Mobile

hub

Data is cached at mobile hub.

Retry on reconnection.

Data is cached at mobile hub.

Retry on reconnection.

7 Mobile

hub

Data is cached at mobile hub.

Retry on reconnection.

Data is cached at mobile hub.

Retry on reconnection.

Table 2.4: Connection loss

20

2.3 Requirements

2.3.3 Constraints and assumptions

ID Name Description

C1 Use of

cyber-

foraging

tactics

One of the main purposes of this demonstrator is to showcase and

test the usefulness of cyber-foraging tactics for an information sys-

tem in resource challenged environments. Therefore, a range of

these tactics as described in (3) should be applied, based on their

usefulness in realizing the requirements of this system.

C2 Low cost

infrastruc-

ture and

hardware

End-users will mostly use low-end mobile devices, while the rest

of the system will be deployed on hardware locally, for which the

cost should be as low as possible.

C3 Use of FIre-

foxOS

FirefoxOS is the mobile OS of choice for the developers. It is open

source, based on standard Web API's, and targeted at low end

smartphones and developing markets.

C4 Use open

standards

Preferred use of open source components and open standards where

possible.

A1 Concurrent

access to

multiple

surrogates

It is assumed that the surrogate signals do not overlap as there is

a maximum of one surrogate per village. This means the mobile

devices and mobile hub can connect to di�erent surrogates, but

never at the same time.

Table 2.5: Constraints and assumptions

21

2. SYSTEM DESCRIPTION

2.3.4 Mapping requirements to tactics

In table 2.6, a mapping from requirements to tactics that will be used to realize them

is shown. The �rst four tactics are prerequisites for other tactics and as such are used

in most cases.

6
.1

C
o
m
p
u
ta
ti
o
n
o
f-

�
o
a
d

6
.2
D
a
ta

st
a
g
in
g

6
.2
.1
P
re
-f
e
tc
h
in
g

6
.3

S
u
rr
o
g
a
te

p
ro
v
i-

si
o
n
in
g

6
.3
.1

P
re
p
ro
v
is
io
n
e
d

su
rr
o
g
a
te

6
.4
S
u
rr
o
g
a
te
d
is
c
o
v
-

e
ry

6
.4
.3

S
u
rr
o
g
a
te

b
ro
a
d
c
a
st

7
.2
F
a
u
lt
to
le
ra
n
c
e

7
.2
.3
C
a
ch
e
d
re
su
lt
s

7
.3

S
c
a
la
b
il
it
y

a
n
d

e
la
st
ic
it
y

7
.3
.1

J
u
st
-i
n
-T
im
e

c
o
n
ta
in
e
rs

FR1 X X X X X X X X

FR2 X X X X X X X

FR3 X X X X X X X X X X

FR4 X X X X X X X X X X

FR5 X X

FR6 X X X X X X X

FR7 X X X X X X X

FR8

FR9 X X X X X X X X

FR10 X X X X

NFR1 X X

NFR2 X X X X

NFR3

NFR4

NFR5 X X X X X X X

NFR6 X X X X X X X

NFR7 X X X X X X X X X

NFR8 X X X X X

NFR9

NFR10

Table 2.6: Tactic mappings

22

2.3 Requirements

6.1 Computation o�oad

Regression and extrapolation (FR3 and FR4) will be initiated by the user on the mobile

device, but the computations will be o�oaded to the surrogate. Data sets on which

these operations are performed will be located at the surrogates and can be reasonably

large, while input for the operations are small sets of variables of simple data types.

The view taken will therefore be that the surrogate o�ers services which are consumed

by the mobile device, making the o�oad take place at the service level, with a payload

consisting of parameters. Furthermore, o�oading energy-intensive computations to the

surrogate is the main method to minimize energy consumption on the mobile device

(NFR5). Lastly, by o�oading from low-end mobile devices to surrogates with more

computational capacity, performance with regards to those calculations is improved

(NFR8), even though there are no strong performance requirements on performing cal-

culations.

6.2 Data staging and 6.2.1 Pre fetching

Data collected on mobile devices (FR1) will be stored locally until it has been success-

fully transferred to a surrogate. The surrogates will store this data inde�nitely, both

to make it accessible to mobile users in the future, but also to make it available to the

mobile hub, which will collect all data eventually. This data will not be saved on the

mobile device after it has been successfully transferred to the surrogate, since storage is

limited for phones. This means mobile devices requesting this data (FR2) will always

get it from a surrogate where this data is staged, unless it has been explicitly saved

on the mobile device by the user. The same is true for additional data retrieved from

the Internet (FR9) and forecasts (FR6), which are pre-fetched from third party API's

and distributed to the correct surrogates, all based on surrogate locations. Availability

(NFR7) of data for each region is thus realized by making sure all collected data is

stored at the related surrogate, and capacity constraints (NFR6) are met because this

minimizes storage space used on mobile devices. The mobile hub will eventually be able

to store new data that was entered on the mobile device in the cloud when it connects to

the Internet (FR7). This is another instance of data staging, where data is �rst staged

at the surrogates, then at the mobile hub itself.

6.3 Surrogate provisioning and 6.3.1 Pre-provisioned surrogate

As noted, these tactics are basic prerequisites to set the system up as a cyber-foraging

system. All required functionality will be available on the surrogate from the start.

They will all use the same OS image (for example: Raspberry Pi with cloned SD card),

23

2. SYSTEM DESCRIPTION

because they should all provide the same functionality. The only initial di�erence be-

tween surrogates will be the location and identi�cation settings as provided during the

setup procedure (FR5).

6.4 Surrogate discovery and 6.4.3 Surrogate broadcast

As noted, these tactics are basic prerequisites to set the system up as a cyber-foraging

system. Mobile device users should be able to make use of system functionality as soon

as they install the app and get in range of a surrogate (NFR2). To increase the ease of

deployment, surrogates broadcast their presence and mobile devices in need of surrogate

services can pick up on these broadcasts. The surrogate broadcasting its presence is

also vital to the automatic registration of newly deployed surrogates at the mobile hub

as soon as they get in communication range (FR10). Lastly, because the opportunities

for interaction between surrogates and the mobile hub are scarce, both the surrogate

broadcasting its presence continuously and the mobile hub continuously trying to dis-

cover surrogates are vital to the system's performance (NFR8).

7.2 Fault tolerance and 7.2.3 Cached results

Each of the interactions between system nodes is susceptible to loss of connection. This

means a tactic for fault tolerance will have to be used. Illustration 2.12 and table 2.4

clarify what should happen when connection losses occur during di�erent interactions

(see also NFR1). When computation o�oad (FR3, FR4) has been correctly initiated,

but the mobile user moves out of range of the surrogate during the computation, results

should be cached so they can be sent to the user as soon as the mobile device connects to

the surrogate again. Caching is used here to realize availability (NFR7). When entering

weather data (FR1) without an available connection, the data is cached on the mobile

device, which will periodically try to resend the data. In this case, caching is used to

prevent breaking up the user experience and enable users to keep on working with the

app, saving new readings and not having to worry about the data being saved correctly.

7.3 Scalability and elasticity and 7.3.1 Just-in-time containers

FR3 and FR4 have in common that they o�oad large computations that will be used

infrequently. Therefore, as opposed to the other services o�ered by surrogates, these

services are better suited to run in their own containers, such that small operations will

not get queued behind these large computations. To be able to handle multiple compu-

tation o�oad requests at the same time, as well as to not let these (large) computations

cause small data transfers to have to wait for them (see also NFR6, capacity), each

24

2.3 Requirements

time a request for a computation o�oad is received at the surrogate, a container with

the necessary functionality is created. The mobile app (or mobile hub) then interacts

directly with this container to consume the service. As requests for computation o�oad

will be infrequent, often with long periods of time between them, only creating con-

tainers for their respective capabilities when they are needed is a tactic that will save

energy (NFR5). During periods of inactivity, only a gateway process has to run.

25

2. SYSTEM DESCRIPTION

26

3

Architecture and design

3.1 System components

The component diagram for the system is shown in illustration 3.1. The components

were initially derived from the tactics that have been chosen in the previous section.

The mappings will be discussed in 3.3. Components for system requirements that were

not covered by the tactics were added afterwards.

27

3. ARCHITECTURE AND DESIGN

F
ig
u
r
e
3
.1
:
S
y
st
em

C
o
m
p
o
n
en
t
D
ia
g
ra
m

N
o
te
:
to

a
v
o
id

c
lu
tt
e
r,

h
ig
h
le
v
e
l
co
m
p
o
n
e
n
ts

h
a
v
e
be
e
n
v
is
u
a
li
ze
d
a
s
d
a
sh
ed

li
n
e
bo
x
e
s

28

3.2 Mobile app components

A mapping of the functional requirements to the components is provided in table

3.1. The system consists of the following components:

3.2 Mobile app components

CD1: Voice Support Manager

This component handles the voice snippets that support the user interface.

CD2: Cyber-foraging Enabled App User Interface

Handles user input and output of responses.

CD3: Mobile App Storage Manager

Manages storage of all permanent data and user settings on the mobile app except for

data that is being staged before moving to the surrogate. Storing and retrieving data

is done through its interfaces, Store app data and Retrieve app data.

CD4: O�oad Client

This component handles computation o�oad from the mobile app to the surrogate,

initiated through CD2.

CD5: Mobile App Data Exchange Client

This component handles staging data and transferring it from the mobile app to the

surrogate after it has been entered through CD2. It also handles requesting and receiv-

ing data from the surrogate.

CD22: Surrogate Discovery Manager

Tasked with �nding available surrogate services.

3.2.1 Surrogate components

CD6: O�oad Server

Handles requests for computation o�oad from mobile devices at the surrogate.

CD7: Setup Manager

Implements the setup process for newly deployed surrogates. O�ers the interface Setup

surrogate, which is used by CD10 when the setup process is started.

CD8: Data Request Server

Handles requests for data stored on the surrogate from mobile devices as well as from

the mobile hub.

CD9: O�oaded Computation Manager

This component creates containers that run o�oaded computations and makes sure

results are consequently stored at the CD13 component.

29

3. ARCHITECTURE AND DESIGN

CD10: Surrogate User Interface

Handles user input and output of responses, used when a screen and mouse/keyboard

are connected to the surrogate (for example during the setup process, or to check con-

sole output).

CD11: Broadcast Manager

Broadcasts the presence of the surrogate and its capabilities, through the interface

Broadcast services. Vital for all requirements in which interaction between the surro-

gate and other system nodes is involved.

CD12: Data Storage Server

Handles requests for storing data on the surrogate from mobile devices as well as the

hub.

CD13: Surrogate Storage Manager

Manages storage of all permanent data, computation results and settings on the surro-

gate. The interfaces for data retrieval include the possibility to have the data removed

after a successful transmission, such that computation results and data that is in transit

can be removed correctly.

3.2.2 Mobile hub components

CD14: Surrogate Registration Manager

This component handles the registration of surrogates that are new to the system. It

does this by picking up broadcasts from the CD11 component and storing new surrogate

data at CD19.

CD15: Mobile Hub Synchronization Client

Manages synchronization of data between the mobile hub and the surrogate.

CD16: Mobile Hub User Interface

Basic user input and output functionality for the hub is handled here.

CD17: Cloud Synchronization Client

This component makes sure data stored in the system is backed up to a cloud repository,

works with CD20.

CD18: API Data Fetcher

This component retrieves weather data from a third party API and stores it on the mo-

bile hub through component CD19. It also periodically checks whether the surrogate

list stored by this component has new entries.

CD19: Mobile Hub Storage Manager

30

3.2 Mobile app components

Handles storage and retrieval of data on the mobile hub. This includes settings, staged

as well as permanent weather data and the list of known surrogates.

3.2.3 Components implemented on third party systems

CD20: Cloud Repository Storage Manager

Combined with CD17, this component makes sure data stored in the system is backed

up to a cloud repository.

CD21: Weather API

This component provides weather data and forecasts through a (REST) interface.

31

3. ARCHITECTURE AND DESIGN

CD1

CD2

CD3

CD4

CD5

CD6

CD7

CD8

CD9

CD10

CD11

CD12

CD13

CD14

CD15

CD16

CD17

CD18

CD19

CD20

CD21

CD22

F
R
1

X
X

X
X

X
X

X
X

X

F
R
2

X
X

X
X

X
X

X
X

X

F
R
3

X
X

X
X

X
X

X
X

X

F
R
4

X
X

X
X

X
X

X
X

X

F
R
5

X
X

X

F
R
6

X
X

X
X

X
X

X
X

X
X

X

F
R
7

X
X

X
X

X

F
R
8

X
X

X

F
R
9

X
X

X
X

X
X

X

F
R
1
0

X
X

X

N
F
R
1

X
X

X
X

X
X

X
X

X
X

X
X

X
X

N
F
R
2

X
X

X
X

X

N
F
R
3

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

N
F
R
4

N
F
R
5

X
X

X
X

X
X

X
X

X
X

X
X

X
X

N
F
R
6

X
X

X
X

X

N
F
R
7

X

N
F
R
8

X
X

X

N
F
R
9

X
X

X
X

X
X

X
X

X
X

X
X

X
X

N
F
R
1
0

X
X

T
a
b
le

3
.1
:
m
a
p
p
in
g
co
m
p
o
n
en
ts

to
re
q
u
ir
em

en
ts

32

3.3 Mapping tactics to components

3.3 Mapping tactics to components

The basis for the system component diagram were components derived from the tactics

selected from (3). In this section, a mapping of the tactics to the system components

will be provided, showing how the tactics will be realized in the system. In the resulting

models, stereotypes are used to show how the components map to the components from

the original tactic descriptions.

Tactic 6.1 - Computation O�oad

Figure 3.2 shows the model based on the computation o�oad tactic, described in (3,

pp. 171).

The o�oad is done at the parameter level, and as opposed to the original model, the

"Execute" call is implicit in the o�oad of the computation. The surrogate will perform

the computation as soon as possible after receiving the parameters. Another di�erence

from the original model is the absence of app metadata, which is not necessary for this

application's o�oad functionality.

33

3. ARCHITECTURE AND DESIGN

Figure 3.2: Components Realizing Tactic 6.1

Tactic 6.2 - Data Staging and 6.2.1 - Pre-Fetching

Figure 3.3 shows the model based on the data staging and pre-fetching tactics. The

model focuses speci�cally on retrieving forecasts from the Weather API. The tactics are

described and modeled in (3, pp. 172).

Since this data will have to move through the mobile hub as well as the surrogate before

reaching the mobile device, the component with the "Data Staging Manager" stereotype

covers subcomponents from both the surrogate as well as the hub. The data push from

hub to surrogate (4 in the model) is modeled as asynchronous since it can only take

place when mobile hub and surrogate connect, and there is no guarantee when this will

happen.

34

3.3 Mapping tactics to components

Figure 3.3: Components Realizing Tactics 6.2 and 6.2.1

Tactic 6.3 - Surrogate Provisioning and 6.3.1 - Pre-Provisioned Surrogate

Figure 3.4 shows the model based on the surrogate provisioning and pre-provisioned

surrogate tactics, as described in (3, pp. 174).

As opposed to the original tactic, in the model, there is no component with the "Remote

User Interface" stereotype, as a remote user interface for the surrogate is not part

of the system speci�cation. Furthermore, the "Capabilities Repository", "Capability

Metadata" and "Capability Registry" are shown as subcomponents of the "Surrogate

Manager" component, as they will not be true repositories (in the sense of a database

or �le). Rather, the data necessary to run the "Data Staging Manager" and "O�oad

Server" components will be part of the Surrogate Manager, and it will pass this data

to them when it initializes them. After all components handling the Cyber-Foraging

services have been initialized, the "Surrogate Discovery" component can be initialized,

during which the Surrogate Manager can provide it with a list of capabilities based on

the services it started earlier.

35

3. ARCHITECTURE AND DESIGN

Figure 3.4: Components Realizing Tactics 6.3 and 6.3.1

Tactic 6.4 - Surrogate Discovery and 6.4.3 - Surrogate Broadcast

Figure 3.5 shows the model based on the surrogate discovery tactic as described in (3,

pp. 176), and the surrogate broadcast tactic as described in (3, pp. 178).

The call from CD4 to CD22 (2 in the model) returns the relevant connection details if

a surrogate is available. It is assumed in the design of the system that there is always

either one or no surrogate available. This explains the di�erence in the number of

36

3.3 Mapping tactics to components

"Surrogate" components between this model and the one proposed in the tactics paper.

Figure 3.5: Components Realizing Tactics 6.4 and 6.4.3

Tactic 7.2 - Fault Tolerance, 7.2.3 - Cached Results, 7.3 - Scalability/Elasticity

and 7.3.1 - Just-in-Time Containers

Figure 3.6 shows the model based on the fault tolerance, cached results, scalabil-

ity/elasticity and just-in-time containers tactics. They are described in (3, pp. 180�182).

In contrast with the model from the paper, the "Results Cache" stereotype/component

37

3. ARCHITECTURE AND DESIGN

is outside of the created container in the form of the surrogate's storage manager.

Containers for o�oaded code are produced by component CD9 in the form of Java

Threads, represented in the model by a call to the container (numbered 6). The creation

of containers happens as soon as possible after o�oad, and the container is discarded

after the computation has been completed (call 8) as per the Just-In-Time Containers

tactic.

Not shown in the diagram is the deletion of the computation results after successful

retrieval by the app.

Figure 3.6: Components Realizing Tactic 7.2, 7.2.3, 7.3 and 7.3.1

3.4 Component interaction

In this section, the interaction between components that takes place during the usage

scenarios (section 2.2) will be visualized using sequence diagrams. The message �ows

in the diagrams will be described. Each of the participants belonging to di�erent high

level components of the system (Mobile hub, Mobile device, Surrogate) will be colored

38

3.4 Component interaction

di�erently, as can be viewed in �gure 3.7.

Figure 3.7: Sequence Diagram Legend

Scenario S1

Figure 3.8 shows the sequence diagram related to scenario S1. It is assumed that voice

support is turned on, and user input is valid throughout the process.

Upon opening the mobile app, voice clips for menu items are played (1). When the user

enters data to be saved, this data is packed in a message and sent to component CD5,

tasked with queuing and sending the data to the surrogate (2, 3).

Periodically, this component will try to establish a connection to a surrogate through

component CD22 (4, 5, 6). In this scenario, it is assumed that there is a surrogate with

the needed service within range, so the connection details of the surrogate are returned

to CD5 (7). Component CD5 can now hand o� the data to component CD12 (8, 11),

which stores the data at the Surrogate Storage Manager (9, 10). If there is no more

data to be handed o� by the mobile device, a message is sent to the UI to be able to

inform the user of this fact (12), and another voice clip playback should be started (13).

39

3. ARCHITECTURE AND DESIGN

Figure 3.8: Scenario S1 (Collect temperature data, surrogate connection available), Se-
quence Diagram

Scenario S2.1, Scenario S2.2, and Scenario S2.3

Figure 3.9 shows the sequence diagram related to scenario S2.1, S2.2 and S2.3. It is

assumed voice support is turned o� and user input is valid throughout the process.

When the user enters the o�oad parameters, they are sent to the O�oad Client on

the mobile app (1, 2). The Discovery Manager is invoked to get the connection details

to the surrogate entry point for the service (3). If successful, the connection details

are returned (4, 5, 6). In the case that there is no surrogate available at that point,

as it is in scenario S2.2, failure messages will be returned (32, 33) so that the user

can be informed of this fact. Assuming success, the regression parameters are sent to

the O�oad Server (7). Assuming the parameters are correct, this component creates a

unique identi�er (named ticket in the diagram), and forwards the computation request

plus ticket to the component that will perform the regression (8, 9). The ticket is also

returned to the O�oad Client (10), as it is used to retrieve regression results later. The

actual computation is performed, after which the results are stored at the Surrogate

Storage Manager (11, 12).

On the mobile device, the ticket is added to a queue on the Data Exchange Client (13,

14). This component will periodically try to retrieve outstanding tickets from the Data

Request Server, which it �nds through the Discovery Manager (15). When there is

no connection at that point, as is the case in scenario S2.3, the Data Exchange and

UI component are informed (28, 31), and the ticket is stored so it can be retrieved

40

3.4 Component interaction

at a later point in time (29, 30). Alternatively, when a connection is available, the

connection details are returned (16, 17, 18). The Exchange Client requests the ticket

results from the Request Server, which will in turn check for the ticket results on its

Storage Manager. The results are then returned (19, 20, 21, 22). In this case, it

is assumed that the regression results have been stored before the mobile app checks

for the ticket. Results that have been successfully retrieved are stored on the Mobile

App Storage Manager (23, 24), after which the surrogate can be informed and remove

the results (25, 26). The user is informed through the UI component after it receives

con�rmation from the Data Exchange Client (27), and can fetch the results (28, 29).

Figure 3.10 shows an additional sequence diagram relating to scenario S2.2. Since the

user has unsuccessfully tried to use a service that requires a connection to a surrogate,

the discovery manager will increase the frequency of periodical checks for surrogates.

This is done by trying to connect to the surrogate broadcast manager. At some point

in time, it �nds a broadcast manager (1, 2) and can inform the app UI component that

a surrogate is available (3). The user can now be alerted that a surrogate is available

through a noti�cation.

Figure 3.11 shows an additional sequence diagram relating to scenario S2.3. In this

scenario, at some time after the ticket for an o�oaded computation has been received,

but before the Data Exchange Client tries to connect to the surrogate to get the results,

the user moves out of range and the mobile device cannot connect to the surrogate

anymore. This results in the Discovery Manager not being able to �nd a surrogate. The

ticket for the o�oaded computation is stored at the Storage Manager, and the Data

Exchange component will periodically try to retrieve the list of outstanding tickets (1,

2). As the user has moved into range once more, a connection to the surrogate is realized

(3, 4, 5, 6), after which the results for the tickets for this surrogate are retrieved (7, 8,

9, 10), and stored on the mobile device (11, 12). The surrogate is informed that the

requested results have been received and can remove the stored results (13, 14). The

UI can then inform the user of the newly available data (15).

41

3. ARCHITECTURE AND DESIGN

Figure 3.9: Scenario S2.1 (Perform regression on rainfall data, expensive computa- tion,
surrogate connection available), S2.2 (Perform regression on rainfall data, expensive com-
putation, no surrogate connection) and S2.3 (Perform regression on rainfall data, expensive
computation, connection breaks during o�oaded computation), Sequence Diagram

Figure 3.10: Scenario S2.2 (Perform regression on rainfall data, expensive computation,
no surrogate connection), Additional Sequence Diagram

42

3.4 Component interaction

Figure 3.11: Scenario S2.3 (Perform regression on rainfall data, expensive computation,
connection breaks during o�oaded computation) sequence diagram), Additional Sequence
Diagram

Scenario S3.1 and Scenario S3.2

Figure 3.12 shows the sequence diagram related to scenarios S3.1 and S3.2. It is as-

sumed voice support is turned o�.

Periodically, the Surrogate Discovery Manager checks whether there is a surrogate avail-

able (1). In this case, there is, and so the Broadcast Manager returns an acknowledge-

ment (2) containing information about data that could be of interest to the mobile

app. In this case, the latest date of the available forecasts is included. The Discovery

Manager informs the UI component that there is a surrogate available (3), and checks

whether the forecasts have been stored before, which in this case they haven't (4, 5).

This also triggers the storage component to remove old forecasts (6). The UI component

is informed that there are available forecasts, such that the user can be noti�ed.

After the user sees the message, he selects the forecasts button, causing the UI compo-

nent to ask the data exchange component to fetch the forecasts (8, 9). The Discovery

Manager is used to get the service connection details (10, 11, 12, 13). The Data Ex-

change Client can now request the new forecast info (14, 15) and this data can conse-

quently be stored through the Storage Manager (16, 17). The UI is informed that new

forecasts have been fetched successfully (18), and can now request them to be able to

show them to the user (19, 20).

In the case of scenario S3.2, retrieving the forecasts fails and the UI is informed (21),

and can now show the "no connection available" icon. After the surrogate has been

restarted, the user retries and succeeds (14 through 20).

43

3. ARCHITECTURE AND DESIGN

Figure 3.12: Scenario S3.1 (Receive new weather forecasts) and S3.2 (Receive new
weather forecasts, surrogate crashes during transfer), Sequence Diagram

Scenario S4

Figure 3.13 shows the sequence diagram related to scenario S4.

As the surrogate is started by the user, the Setup Manager checks whether setup data

for the surrogate has been stored before (1). If it has (2), the surrogate can proceed to

boot into normal usage mode (which is not modeled here). If no setup data is available

(3), the setup process has to be completed before the surrogate can work. Therefore,

the setup procedure has to be started on the UI component (4), and the data �lled in

by the user has to be returned (5), and if it is valid input data, stored (7, 8). If the

input is not valid, the user should be alerted so he can try again (6). When storage is

successful, the user can be informed that the surrogate is now active through the UI

(9).

44

3.4 Component interaction

Figure 3.13: Scenario S4 (Setting up a surrogate), Sequence Diagram

Scenario S5

Figure 3.14 shows the sequence diagram related to scenario S5. The mobile hub UI

component is left out of this diagram.

The Synchronization Client on the mobile hub picks up the surrogate broadcast (1), and

sends a request to store new data to the Storage Server (2). After accepting (3), the

data is fetched from storage (4, 5), transferred (6), and has to be stored by the Surrogate

Storage Manager (7, 8), before a success message can be returned to the mobile hub

(9). When this message is received, the mobile hub sends a request to retrieve new data

to the data request server on the surrogate (10). Included in this request is the latest

time that the mobile hub received data from the surrogate. The data has to be fetched

from the Storage Manager (11, 12), and is eventually returned to the mobile hub (13),

where it is stored (14, 15).

45

3. ARCHITECTURE AND DESIGN

Figure 3.14: Scenario S5 (Mobile hub synchronizes with surrogate), Sequence Diagram

Scenario S6

Figure 3.15 shows the sequence diagram related to scenario S6. The mobile hub UI

component is left out of this diagram.

When the mobile hub connects to the Internet, the Cloud Synchronization Client tries

to connect to the cloud storage and sends a request for storage (1) which is accepted

(2), after which the data to be sent to the cloud storage is fetched (3, 4). It is then

successfully stored (5, 6).

The API Data Fetcher requests the latest data from an online weather API (7, 8), which

is then stored on the mobile hub as well (9, 10).

Note: the two processes depicted by messages (1) through (6) and and (7) through (10)

are asynchronous with respect to each other. They are both triggered on connection to

the Internet.

46

3.4 Component interaction

Figure 3.15: Scenario S6 (Mobile hub connects to the Internet), Sequence Diagram

Scenario S7

Figure 3.16 shows the sequence diagram related to scenario S7. It is assumed that the

requested data is not saved and a connection to a surrogate is available at all times.

A user requests weather data (1), after which an acknowledgement is shown on screen

(2). The Exchange Client requests the Discovery Manager to �nd a surrogate that

provides the service (3). The Discovery manager connects to the surrogate, and returns

the active connection to the Exchange Client (4, 5, 6), and the actual data request can

now be sent (7). The request is forwarded to the Surrogate Storage Manager (8), and

eventually the requested data is returned to the UI so it can be shown to the user (9,

10, 11).

47

3. ARCHITECTURE AND DESIGN

Figure 3.16: Scenario S7 (Retrieve stored weather data), Sequence Diagram

Scenario S8

Figure 3.17 shows the sequence diagram related to scenario S8.

The Surrogate Registration Manager on the mobile hub picks up the surrogate broadcast

(1), and sends a request for surrogate information to the Broadcast Manager (2). The

reply (3) contains the requested data, which is saved on the mobile hub (4).

Figure 3.17: Scenario S8 (Retrieve stored weather data), Sequence Diagram

48

4

Implementation

4.1 Demo implementation details

4.1.1 Introduction

A demo implementation was created under the name AgroTempus. A GitHub Webpage

for AgroTempus is available at (9). On this page, the demo project is available as a

download. In Appendix A, a user guide is available, as well as installation and setup

instructions. Due to time constraints, only part of the system was been implemented.

Selection of implemented components was based on implementing as many of the se-

lected tactics as possible, as well as delivering an application with working end-user

functionality. This led to the choice of implementing the app and surrogate main com-

ponents �rst. Figure 4.1 shows the system component diagram, with the components

that have been implemented in the demo in green, and components that have not been

implemented in red.

49

4. IMPLEMENTATION

F
ig
u
r
e
4
.1
:
S
y
st
em

C
o
m
p
o
n
en
t
D
ia
g
ra
m

-
Im

p
le
m
en
ta
ti
o
n
ov
er
v
ie
w

N
o
te
:
to

a
v
o
id

c
lu
tt
e
r,

h
ig
h
le
v
e
l
co
m
p
o
n
e
n
ts

h
a
v
e
be
e
n
v
is
u
a
li
ze
d
a
s
d
a
sh
ed

li
n
e
bo
x
e
s

50

4.1 Demo implementation details

4.1.2 Changes and notes

Change from Surrogate Broadcast to Local Surrogate Directory tactic

At implementation time, no working ad-hoc networking library was found for Firefox

OS. Therefore, the Surrogate broadcast tactic could not be used for surrogate discovery

in the mobile app. It was replaced by the Local surrogate directory tactic (tactic 6.4.1

in (3)). A list of surrogates, including connection details, is maintained on the mobile

app. This way, whenever a surrogate service is needed, the mobile app can try and

connect to each surrogate one by one until it can make a connection to a surrogate that

provides the needed capabilities.

No persistent storage

The demo implementation does not yet have a persistent database for the surrogate.

This means data on the surrogate is lost when the surrogate software is closed. To

support testing of the application, dummy data (forecasts and local weather data is

loaded during initialization.

The outgoing queues for computation result requests as well as weather data storage

requests on the app are not yet persistently stored.

4.1.3 Technologies used

The mobile app ("Mobile device" in the component diagram 4.1) , covering components

CD2, CD3, CD4, and CD22, is a Firefox OS app. This is in line with constraint C3. A

Firefox OS app is essentially a Web app, consisting of HTML pages, CSS style sheets

and Javascript code. Most of the app logic is written in plain Javascript, with minimal

use of the JQuery library (10).

The surrogate, covering components CD6, CD7, CD8, CD9, CD10, CD12 and CD13,

was implemented in Java as a multi-threaded application. The component performing

regression and prediction (CD9) makes use of the free Java chart library JFreeChart

(11), which o�ers tools to perform regression on data sets as well as to generate plot

images to visualize the results in common image formats. The same component also

makes use of the Apache Commons Codec (12) to convert generated images into Base64

binary string format.

For communication between components residing on di�erent nodes, JSON (13) was

chosen as the standard message and data storage structure. This format is used by

(free) weather APIs like OpenWeatherMap (14), and works well with Javascript. To

be able to use JSON objects in the surrogate code, the system makes use of the JSON

51

4. IMPLEMENTATION

Simple library (15).

The surrogate software was tested on a Raspberry Pi 2 model B, using a TL-WN722N

wireless adapter. The Operating system used was Raspbian, a Linux distribution opti-

mized for Raspberry Pi (7).

4.1.4 Software project structure

On the GitHub Webpage for AgroTempus (9) the project can be downloaded as a pack-

aged �le, or cloned. As the demo was developed using the Eclipse IDE (16), the code is

contained in an Eclipse project. The project is divided into three subprojects which can

be found in the folders with their respective names, AgroTempus-app, AgroTempus-hub,

and AgroTempus-surrogate for each of their corresponding components.

App components

CD2 code is contained in app.js, app.html and style.css, which also is the main app

program.

CD3 in storage.js.

CD4 in o�oad.js.

CD5 in dataexchange.js.

CD22 in discovery.js.

Surrogate components

The main surrogate program is contained in Surrogate.java.

CD6 in O�oadServer.java, O�oadServerWorker.java.

CD7 in SetupManager.java.

CD8 in RequestServer.java and RequestServerWorker.java.

CD9 in O�oadComputationManager.java, O�oadComputationWorker.java and Com-

putationRequest.java.

CD10 in SurrogateUI.java.

CD12 in StorageServer.java and StorageServerWorker.java.

CD13 in StorageManager.java, ComputationResultRequest.java, RegionalRequest.java

and ForecastRequest.java.

52

4.2 Requirements and tactic implementation

4.2 Requirements and tactic implementation

4.2.1 General comments

All of the requirements that involve the surrogate naturally make use of the Surrogate

Provisioning and Preprovisioned Surrogate tactics. These will not be considered fur-

ther in the following discussion of the requirements. As noted before, the Surrogate

Discovery tactic has been replaced with the Surrogate Directory tactic in the demo

implementation.

4.2.2 Functional requirements

The functional requirements that have been implemented in the demo are FR1 (Store

Weather Data), FR2 (Retrieve Weather Data), FR3 (Perform Regression on Weather

Data) , FR4 (Predict Future Weather Data Values), FR5 (Surrogate Setup) and FR6

(Forecast Delivery). Unimplemented requirements FR7, FR9 and FR10 all depend on

the Mobile Hub component, which was not implemented.

Requirement FR8 (Voice Interface) does not relate to any tactic, and was therefore

treated as a low-priority item.

The implementation does cover all selected tactics related to the functional requirements

(see table 2.6), except for the Pre-Fetching tactic. Part of the pre-fetching process is

simulated by the surrogate by loading dummy data at startup.

Requirements FR1, FR2, FR3, FR4 and FR6 make use of the Data Staging tactic. Out

of the model 3.3 derived from this tactic, only the surrogate and app parts were used.

The model only covers functionality where data is moving from the surrogate to the

app, which was implemented as modeled. Components CD2, CD5, CD12 and CD13 are

also used for moving data from the app to the surrogate, which is another instance of

making use of data staging which was not explicitly modeled.

Ignoring the requirements related to the mobile hub and the Voice Interface requirement,

all six functional requirements where realized by using the models based on the cyber-

foraging tactics. The result is a functioning application that o�ers all the capabilities

described in the selected requirements.

4.2.3 Non-functional requirements

NFR1 - Fault tolerance and reliability

Because service instances run in separate threads after the initial connection, a failed ser-

vice thread won't in�uence the main service thread. Passing data between threads hap-

53

4. IMPLEMENTATION

pens through thread-safe queues (java.util.concurrent.ConcurrentLinkedQueue). Fur-

thermore, the main surrogate process periodically checks whether all service threads

are alive. Crashed threads are restarted. There are no checks on the main process in

the demo yet.

When a computation is successfully o�oaded, the results are stored (at this moment

inde�nitely while the surrogate is running) until the app requests the corresponding

ticket number. The results are only deleted when a message con�rming reception is

returned by the app (see also sequence diagram 3.9). Other connection loss scenarios

are handled as per table 2.4, for example, when weather data has been stored on the

mobile app but the connection fails, it is queued to be sent later.

This storage of data at system nodes when a connection fails is based on the Fault Tol-

erance and Cached Results tactics. Client-side Data Caching is also used, since caching

happens at mobile devices as well.

NFR1 has been fully realized as far as the implemented components go.

NFR2 - Easy deployment

The mobile app cannot be installed through an app store yet. No con�guration is

needed after installation. The process of setting up a surrogate amounts to �lling in a

form and submitting it. Component CD22 (the Surrogate Discovery Manager) detects

and connects to surrogates whenever the app tries to invoke a service.

Automatic connection is based on the Surrogate Discovery tactic as well as the Local

Surrogate Directory tactic. This part of the implementation deviates from the models,

since it originally was planned to be the Surrogate Broadcast tactic. The Surrogate

Discovery Manager component now functions as the Surrogate Directory component (3,

pp. 176�177), and is responsible for setting up the initial connection to the surrogate

as well. This is di�erent from the model described in the tactic, the reason being that

this component was already coded to be used for the Surrogate Broadcast tactic, and

partly functional. Updating it with a directory was the fastest way to realize the new

tactic without having to radically change the existing codebase.

Another di�erence to the tactic is the absence of the Surrogate Directory UI compo-

nent. Due to time constraints, the list of surrogates was hardcoded in CD22. A way to

populate the directory should be present in a fully functional version of the application.

NFR2 has been mostly realized for the implemented components, except for the app

being available in an app store. This is however not a critical feature for the demo.

NFR3 - Usability

At present, application text is in English, other languages have not yet been imple-

mented.

54

4.2 Requirements and tactic implementation

No tactics are related to this requirement.

NFR3 has not been realized except for text in English. However, this requirement is

not related to the tactics or cyber-foraging and as such is not critical for the demo

implementation.

NFR4 - Extensibility

A description of the surrogate service structure and adding new services will be available

on the project Webpage (9). Adding a new service is not optimized yet, and as such

extensibility is still lacking. Java classes like the server workers should have interfaces,

for example, which would make adding new services much easier. The Javascript �les

should also be organized better, grouping code that belongs to the same services.

No tactics are related to this requirement.

NFR4 has not been realized fully, however it is not critical for the demo version and

the research.

NFR5 - Energy e�ciency

The app only tries to connect to surrogates when necessary, either when a service is

invoked or when there are items in an o�oad queue. The expensive regression compu-

tations are o�oaded.

Worker threads are only created on the surrogate when a queued task has to be per-

formed or when connections are made by the mobile app, and workers are destroyed

after the task has been performed.

O�oading was based on the Computation O�oad tactic, with no notable changes to

the model.

The use of workers implements the Just-in-time Containers and Scalability/Elasticity

tactics. The availability of standard libraries for threads and data structures supporting

easy communication between threads in Java in�uenced the choice to implement this

tactic in the chosen manner.

NFR5 has been realized. By using o�oad of expensive computations the energy use of

the mobile device is minimized. Surrogates only create worker threads when needed,

saving energy. There is some room for optimization by looking into the sleep time of

the non-worker threads running on the surrogate.

NFR6 - Capacity

The mobile app size is under 10 MB, not counting stored computation results (which

can be deleted by the user). The surrogate can handle multiple service requests simul-

taneously.

The Just-in-time Containers and Scalability/Elasticity tactics are at the basis of the

surrogate being able to handle multiple service requests at a time, realized by the im-

55

4. IMPLEMENTATION

plementation of services through the creation of worker threads. The need to handle

multiple requests was therefore another factor leading to choosing Java threads for the

surrogate implementation.

NFR6 has been fully realized.

NFR7 - Availability

Availability testing has not been performed yet, because not all hardware components

(notably the solar battery component) were available at implementation time. Checking

battery life and computing whether an o�oaded computation will take long have not

been implemented yet for the same reason.

NFR7 has not been realized.

NFR8 - Performance

The surrogate does not yet broadcast its presence because the mobile hub component

has not been implemented yet. All other aspects of this requirement have to do with

mobile hub functionality.

NFR8 has not been realized, it is not related to the implemented components.

NFR9 - Recovery

A startup script will be included in the surrogate OS image. No tactics are related to

this requirement.

NFR9 will be realized.

NFR10 - Data integrity

Input checks were not given high priority in the demo implementation, some are present

however. No tactics are related to this requirement.

NFR10 was not fully realized. It is however not critical the demo nor for the cyber-

foraging tactics.

56

5

Conclusion and Discussion

5.1 Conclusion

This document has covered the usage scenarios and requirements for an agricultural

knowledge exchange system that can be used in resource-challenged regions. A set of

cyber-foraging tactics was selected based on those requirements, and consequently used

to create an architecture for the system.

The demo implementation does not cover all requirements, but in conjunction with the

architecture and design models nonetheless shows that the selected tactics can be used

to successfully create the architecture that in turn is used to realize the functional as

well as non-functional requirements of this kind of system.

5.1.1 Research results

RQ1: What are the usage scenarios for an agricultural knowledge exchange system to

be used in a resource-challenged region?

Results: A system that can support exchanging weather information was used as the

use case for this research. Section 2.2 describes a base set of usage scenarios for this

type of system.

RQ2: Which of the proposed cyber-foraging architectural tactics can be used in the

development of the system and how do they map to the system requirements?

Results: The system requirements, based on the scenarios, can be found in section 2.3.

The tactic selection, along with the mapping of tactics to these requirements, can be

found in section 2.3.4. The tactics that were selected are Computation O�oad, Data

staging, Pre-fetching, Surrogate Provisioning, Preprovisioned Surrogate, Surrogate Dis-

57

5. CONCLUSION AND DISCUSSION

covery, Surrogate Broadcast, Fault Tolerance, Cached Results, Scalability and Elasticity

and Just-in-Time Containers.

RQ3: What system architecture and design follows from using the selected tactics?

Results: By using the descriptions and example models of the selected tactics, a base

set of 19 system components could be created, combined with a base set of component

interactions. The �nal number of components was 22, with 3 components based on

requirements that were not related to cyber-foraging. Therefore, the majority of the

system architecture and design was directly derived from the tactics.

The full architecture and design can be found in chapter 3.

RQ4: Does the developed system based on these tactics meet all its functional and

non-functional requirements?

Results: A demo version of the application was created, which implements two out of

three of the main components (Mobile app and Surrogate). These components cover

seven out of ten functional requirements. Six of those requirements were implemented.

The unimplemented component was not related to or based on cyber-foraging tactics,

and was therefore not as relevant for this research.

Out of the ten non-functional requirements, �ve were realized, of which one has no

relation to cyber-foraging. Three were partly realized, two of which have no relation to

cyber-foraging. Three non-functional requirements were not implemented, of which one

had no relation to cyber-foraging, one was dependent on the unimplemented component

(the mobile hub), and one was dependent on unavailable hardware.

It can be concluded that the tactics were successfully used to create an architecture and

implementation of an application for agricultural knowledge exchange that ful�lls most

of its relevant requirements.

Main Research Question: What cyber-foraging architectural tactics can be used to

develop an agricultural knowledge exchange system to be used in a resource-challenged

region?

Results: The following tactics from (3) can be used: Computation O�oad, Data

staging, Pre-fetching, Surrogate Provisioning, Preprovisioned Surrogate, Surrogate Dis-

covery, Surrogate Broadcast, Fault Tolerance, Cached Results, Scalability and Elasticity

and Just-in-Time Containers.

58

5.2 Discussion

5.2 Discussion

Although a working implementation and a design document were created based for the

greater part on the tactics listed in the conclusion, other tactics could possibly be used,

either for adding new functionality or implementing parts of the system di�erently.

Firstly, one of the selected tactics wasn't implemented yet and should still be tested,

namely the Pre-Fetching tactic. Secondly, di�erent software engineers might prefer to

use di�erent tactics for similar functionality based on their knowledge and experience.

More experimenting and comparing results would help to get more insight.

Furthermore, this study did not compare the tactics-based approach to other architec-

tural approaches. This study can hopefully be used for comparisons in this aspect. The

method did prove to be a reasonably straightforward as well as a very structured way

of building an application.

The use of the Surrogate Broadcast tactic would have been preferred over the Surro-

gate Directory tactic, because it would remove the need for a way to propagate the

connection information of surrogates that are added to the system later to all system

nodes, which is more complex than each surrogate simply broadcasting a signal. The

use of QR codes on surrogates to scan for the connection data on the mobile device was

considered but not realized since there were no (open source) libraries that could be

used for QR code scanning on Firefox OS at implementation time.

In a future implementation, this issue should de�nitely be revisited. Surrogates broad-

casting their presence also seems more in line with the idea of mobile devices oppor-

tunistically making use of available resources.

For this project, the usage scenarios were created through discussion with people who

were involved with projects in resource-challenged regions before. The ideal way to

create a set of scenarios would evidently have been to gather them from the would-be

users of such a system.

The entire project, including this document and the software component, will be made

available through the Github page as an open-source project. Aspects that have less

to do with the cyber-foraging tactics aspect of the project such as the voice interface

(FR8), user interface and selection of proper services based on relevant scenarios could

possibly merit their own research and projects.

59

5. CONCLUSION AND DISCUSSION

60

6

Appendices

6.1 Appendix A: Running the application

The AgroTempus software is available at (9).

6.1.1 Installation

Surrogate A Raspbian image with the surrogate component installed is available at

the project page (9). This image was tested on a Raspberry 2 model B with a TL-

WN722N wireless adapter connected. The surrogate can also be ran or exported as a

runnable Jar from the Eclipse workspace. A runnable Jar �le is also included in the

Runnable_AgroTempus_surrogate folder. If the surrogate is not started from the pro-

vided image, make sure to read the setup instructions below.

App The app can be installed on a Firefox OS phone, version 1.3 or higher, or ran

on a simulator. Running it on a phone is preferred, as visual artifacts occur when

running the app on the standard simulator. Installation is done through the WebIDE

component of the Firefox Web browser, which can be started by navigating to Tools >

Web Developer in the menu. If a Firefox OS phone is connected to the computer, it can

be selected after clicking the "Select runtime" menu. Simulators can also be installed

and selected here.

When a runtime has been selected, navigate to Project > Open Packaged App, and

select the app project folder, AgroTempus-app. The app can now be installed and used.

61

6. APPENDICES

6.1.2 Setup

Surrogate To be able to load dummy data when running the surrogate from the Jar

�le, make sure the data �les (DUMMY_FORECASTS.json and

DUMMY_REGIONAL_DATA.json) are in the surrogate/data folder, where "surro-

gate" is the folder in which the Jar is located.

The �rst time the surrogate is started, location data should be entered through a dialog.

The application should be allowed to write a setup �le to the folder where the Jar is

located.

App To be able to use app functionality, Wi-Fi should be be enabled on the phone.

If the standard surrogate setup (using the image for RaspBerry Pi with a TL-WN722N

Wi-Fi adapter) is used, the correct connection data will be available in the app and

no further setup will be needed. To be able to interact with the surrogate software if

it is ran from another type of computer, the surrogate's connection information should

be added to the storage.js �le in the AgroTempus-app folder of the project. At the

"SURROGATE CONNECTION DATA" comment, the �rst entry can be edited with

the connection data for the system the surrogate will be running on. The app needs to

be redeployed from the WebIDE console after these changes.

6.2 Appendix B: Usage guide

Surrogate The surrogate has a user interface that prints system messages to the

screen. From the user interface, the surrogate can be closed, or the user interface can

be closed while keeping the surrogate running. Entering "ui" on the program's STDIN

will relaunch the user interface.

App A description of all app screens is provided in this subparagraph. Figure 6.1

shows a selection of app screenshots.

• Main menu The �rst screen (1) is the main menu, which is visible when the app

starts.

• Store data To store weather data, the "Submit data" button is used to go to the

data submission screen (2). Here, data can be entered and submitted.

• Get data To retrieve weather data, the "Get data" button is used. It will take the

user to the data retrieval screen where a start and end date can be entered to get

all data between these two dates for the surrogate that is currently in range.

62

6.2 Appendix B: Usage guide

• Forecasts The "Forecasts" button will take the user to the forecasts screen, the app

will automatically try to load the latest forecasts.

• Prediction The "Prediction" button opens the prediction screen (3), where a vari-

able to predict can be chosen. The app will try to connect to the surrogate to

o�oad this operation. If successful, a "new message" icon will appear at the top

of the screen. Tapping this will take the user to the received items screen.

• Regression Likewise, the "Regression" button opens the regression screen (4). When

a query is submitted, an o�oad is attempted. If it is successfully performed, the

"new message" icon will appear.

• Received items At the received items screen, all computation results that have

been received from surrogates are listed. Tapping the ticket number will open the

details for each item.

63

6. APPENDICES

Figure 6.1: App screenshot

64

References

[1] Voices project, 2015.

[2] Firefox OS Phones for under 50 dollars, 2015.

[3] Grace Lewis and Patricia Lago. Architectural tac-

tics for cyber-foraging: Results of a systematic

literature review. Journal of Systems and Software,

107:158�186, 2015.

[4] Gu Zhang. From feature phones to smartphones,

the road ahead. 2015.

[5] Ericsson AB. Ericsson Mobility Report Appendix,

Sub-Saharan Africa. 2013.

[6] Alex Sandy Pentland, Richard Fletcher, and Amir

Hasson. Daknet: Rethinking connectivity in de-

veloping nations. Computer, 37(1):78�83, 2004.

[7] Raspberry Pi website, 2015.

[8] Marat Charlaganov, Philippe Cudré-Mauroux, Cris-

tian Dinu, Christophe Guéret, Martin Grund, and

Teodor Macicas. The Entity Registry System: Im-

plementing 5-Star Linked Data Without the Web.

arXiv preprint arXiv:1308.3357, 2013.

[9] AgroTempus GitHub project page, 2015.

[10] jQuery Website, 2015.

[11] JFreeChart Website, 2015.

[12] Apache Commons Codec Website, 2014.

[13] JSON Website, 2015.

[14] OpenWeatherMap, 2015.

[15] JSON Simple Google Code page, 2015.

[16] Eclipse IDE Website, 2015.

65

http://mvoices.eu/
http://www.gsmarena.com/firefox_os_smartphones_for_under_50_to_launch_in_india-news-9034.php
https://gsmaintelligence.com/research/2015/01/from-feature-phones-to-smartphones-the-road-ahead/456/
https://gsmaintelligence.com/research/2015/01/from-feature-phones-to-smartphones-the-road-ahead/456/
http://www.ericsson.com/res/docs/2013/emr-nov13-rssa.pdf
http://www.ericsson.com/res/docs/2013/emr-nov13-rssa.pdf
https://www.raspberrypi.org/
http://reuelbrion.github.io/AgroTempus/
https://jquery.com/
http://www.jfree.org/jfreechart/
https://commons.apache.org/proper/commons-codec/
http://www.json.org/
http://openweathermap.org/api
https://code.google.com/p/json-simple/
http://www.eclipse.org/

Declaration

I herewith declare that I have produced this paper without the prohibited

assistance of third parties and without making use of aids other than those

speci�ed; notions taken over directly or indirectly from other sources have

been identi�ed as such. This paper has not previously been presented in

identical or similar form to any other Dutch or foreign examination board.

The thesis work was conducted from 2-1-2015 to 10-1-2015 under the super-

vision of Grace Lewis at Vrije Universiteit Amsterdam.

Amsterdam, 9-1-2015

	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Objective
	1.3 Research Question
	1.3.1 Main Research Question
	1.3.2 Subquestions

	1.4 Research Method

	2 System description
	2.1 Outline
	2.2 Usage scenarios
	2.3 Requirements
	2.3.1 Functional requirements
	2.3.2 Non-functional requirements
	2.3.3 Constraints and assumptions
	2.3.4 Mapping requirements to tactics

	3 Architecture and design
	3.1 System components
	3.2 Mobile app components
	3.2.1 Surrogate components
	3.2.2 Mobile hub components
	3.2.3 Components implemented on third party systems

	3.3 Mapping tactics to components
	3.4 Component interaction

	4 Implementation
	4.1 Demo implementation details
	4.1.1 Introduction
	4.1.2 Changes and notes
	4.1.3 Technologies used
	4.1.4 Software project structure

	4.2 Requirements and tactic implementation
	4.2.1 General comments
	4.2.2 Functional requirements
	4.2.3 Non-functional requirements

	5 Conclusion and Discussion
	5.1 Conclusion
	5.1.1 Research results

	5.2 Discussion

	6 Appendices
	6.1 Appendix A: Running the application
	6.1.1 Installation
	6.1.2 Setup

	6.2 Appendix B: Usage guide

	References

